(19)

2 802 758⁽¹³⁾ C1

(51) MIIK A23K 50/80 (2016.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(52) CIIK A23K 50/80 (2023.05)

(21)(22) Заявка: 2023105878, 13.03.2023

(24) Дата начала отсчета срока действия патента: 13.03.2023

Дата регистрации: 01.09.2023

Приоритет(ы):

(22) Дата подачи заявки: 13.03.2023

(45) Опубликовано: 01.09.2023 Бюл. № 25

Адрес для переписки:

400002, г. Волгоград, пр. Университетский, 26, ФГБОУ ВО Волгоградский ГАУ, Долговой А.И.

(72) Автор(ы):

Ранделин Дмитрий Александрович (RU), Агапова Василина Николаевна (RU), Кравченко Юрий Владимирович (RU), Новокщенова Анна Ивановна (RU)

(73) Патентообладатель(и):

Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный аграрный университет" (ФГБОУ ВО Волгоградский ГАУ) (RU)

 ∞

N

S

 ∞

(56) Список документов, цитированных в отчете о поиске: RU 2717991 C1, 27.03.2020. SU 1575333 A1, 10.08.1998. WO 2000041576 A1, 20.07.2000.

(54) Гранулированный комбикорм для молоди форели с белковым сырьем микробного синтеза

(57) Реферат:

Гранулированный комбикорм включает пшеницу, шрот соевый, кукурузный глютен, муку мясную, муку рыбную, муку кровяную, жир рыбий, масло подсолнечное, гаприн. Все компоненты используются в определенном соотношении. Изобретение обеспечивает повышение живой массы и коэффициента упитанности. 1 пр.

 ∞ S 2 0 ∞

2

(19) **RU** (11)

2 802 758⁽¹³⁾ C1

(51) Int. Cl. *A23K 50/80* (2016.01)

FEDERAL SERVICE
FOR INTELLECTUAL PROPERTY

(12) ABSTRACT OF INVENTION

(52) CPC

A23K 50/80 (2023.05)

(21)(22) Application: 2023105878, 13.03.2023

(24) Effective date for property rights:

13.03.2023

Registration date: 01.09.2023

Priority:

(22) Date of filing: 13.03.2023

(45) Date of publication: **01.09.2023** Bull. № **25**

Mail address:

400002, g. Volgograd, pr. Universitetskij, 26, FGBOU VO Volgogradskij GAU, Dolgovoj A.I.

(72) Inventor(s):

Randelin Dmitrij Aleksandrovich (RU), Agapova Vasilina Nikolaevna (RU), Kravchenko Yurij Vladimirovich (RU), Novokshchenova Anna Ivanovna (RU)

(73) Proprietor(s):

Federalnoe gosudarstvennoe byudzhetnoe obrazovatelnoe uchrezhdenie vysshego obrazovaniya "Volgogradskij gosudarstvennyj agrarnyj universitet" (FGBOU VO Volgogradskij GAU) (RU)

N

 ∞

N

V

ω Ω

(54) GRANULAR FEED FOR TROUT FRY WITH PROTEIN RAW MATERIALS OF MICROBIAL SYNTHESIS

(57) Abstract:

FIELD: agriculture.

SUBSTANCE: granular feed includes wheat, soybean meal, corn gluten, meat meal, fish meal, blood meal, fish oil, sunflower oil, gaprin. All components

are used in a certain ratio.

EFFECT: increase in live weight and body condition ratio.

1 cl, 1 ex

ပ ၂

2758

 ∞

∠

Известно изобретение, в котором выращивали на комбикорме с 50% гаприна, проведены определения переваримости [Абрамова, Афанасьева, 1989]. Было показано, что его протеин переваривается на 83%, доступность аминокислот составляет 80-93%, липидов - 58%, нуклеиновых кислот - 89%, а общей суммы питательных веществ - 61%. Согласно заключению ГосНИОРХ [Остроумова и др., 1991], гаприн оказался более питательным кормовым компонентом, чем паприн для карповых, лососевых, сиговых рыб, а также дальневосточных лососей. Его рекомендовано включать в стартовые комбикорма (для замещения паприна), а также в продукционные корма для сеголеток (до 30%). При выращивании карпов в условиях тепловодных хозяйств в комбикорме для годовиков массой от 50 до 200 г его оптимальное количество может составлять 20%, для рыб массой от 200 г до товарной навески - 13%. В комбикорма для молоди форели гаприн можно вводить в количестве 10-20%. (http://www.aquaristics.ru/pond/forage/mikrobnaya-biomassa-gaprin-v-pitanii-dlya-ryb).

Известное изобретение относится к животноводству, в частности к белковой кормовой добавке для сельскохозяйственных животных, птицы и культивируемых рыб. Способ характеризуется тем, что она содержит штамм метанокисляющих бактерий Methylococcus capsulatus ГБС-15 ВКПМ В-12549 и штамм гетеротрофных бактерий Cupriavidus gilardii GBS-15-1 при определенном соотношении. При этом добавка может дополнительно содержать штамм гетеротрофных бактерий Stenotrophomonas acidaminiphila GBS-15-2, а также штамм гетеротрофных бактерий Klebsiella pneumonia 1-17. Использование изобретения позволяет получить продукт с высоким содержанием белка.

Известное изобретение предназначено для использования в животноводстве, птицеводстве и рыбоводстве, в частности, относится к биодобавкам для кормов при выращивании сельскохозяйственных животных и птиц, рыб в искусственных водоемах, для повышения продуктивности, естественной резистентности.

Исследования питательных свойств белковой кормовой добавки проводились на животных, для которых предназначен продукт: свиньи, телята, овцы, птица, рыба. Кормление животных осуществлялось по принятым нормам. В качестве источника протеина в контрольные рационы включали соевый шрот, рыбную муку, гаприн. Количество заявляемой белковой кормовой добавки и контрольной добавки включали до 20% от суточной нормы перевариваемого протеина рациона в зависимости от возраста животных, птиц и рыб.

Скармливание рациона с белковой кормовой добавкой, содержащей предлагаемую ассоциацию штаммов, способствует увеличению живой массы за счет прироста мышечной ткани. Улучшается качество мяса за счет уменьшения содержания жира в мышечной ткани.

Известное изобретение позволяет увеличить продуктивность животных, птицы и рыбы, их выживаемость, экологическую безопасность мяса, получить мясо с функциональными свойствами (патент РФ №RU 2717991 C1, опубликован 27.03.2020).

За прототип выбран рацион РГМ - 8 В для молоди форели массой более 50 г., рацион (в %): мука рыбная - 19,6, мясокостная мука - 2, кровяная - 2, мука пшеничная - 7,6, мука водорослевая - 1, сухое обезжиренное молоко - 2, шрот подсолнечный - 25, шрот соевый - 26, дрожжи гидролизные - 8, фосфатиды - 5,8, премикс $\Pi\Phi$ - 1 (https://msd.com.ua/fish-farming/kormforel/) К недостаткам известных рецептур следует отнести

многокомпонентность, дороговизну и не стабильность качества корма, за счет ввода в рецептуру многообразия продуктов животного происхождения и шротов.

Задача - импортозамещение и расширение ассортимента отечественных продукционных кормов для выращивания лососевых видов рыб.

40

Технический результат - повышение живой массы, абсолютного, среднесуточного прироста, абсолютного прироста длины, ширины, высоты тела, а также сохранности видов рыб.

Технический результат достигается гранулированным комбикормом для молоди форели с белковым сырьем микробного синтеза, состоящим из компонентов животного происхождения, рыбной, кровяной муки, рыбьего жира; ингредиентов растительного происхождения пшеницы, соевого шрота, отличающийся тем, что в качестве продукта микробиального происхождения введен гаприн, дополнительно содержит мясную муку, масло подсолнечное и кукурузный глютен, при следующем соотношении компонентов на 100 г готового продукта, г:

Пшеница	12
Шрот соевый	20
Кукурузный глютен	5
Мука мясная	10
Мука рыбная	12,5
Мука кровяная	10
Жир рыбий	10
Масло подсолнечное	8
Гаприн	12,5

суточная дача корма рассчитывалась ежемесячно согласно изменению живой массы. Гаприн представляет собой биомассу метанокисляющих бактерий Mithylococcus capsulatus. Этим бактериям свойственна очень высокая интенсивность размножения и синтеза белка, что сделало привлекательным их использование для производства кормового белка.

Отличительная особенность аминокислотного состава гаприна - высокое содержание ароматических кислот-фенилаланина и тирозина, а также метионина. Это одно из очень существенных преимуществ гаприна, т.к. недостаток этих аминокислот постоянно ощущается в комбикормах для многих видов рыб.

Пример конкретного выполнения.

15

20

30

Для приготовления гранулированного корма для молоди форели с белковым сырьем микробного синтеза - гаприн на 1000 г использовалось пшенцы - 120 г, шрота соевого - 200 г, кукурузного глютена - 50 г, муки мясной - 100 г, муки рыбной - 125 г, муки кровяной - 100 г, рыбьего жира - 100 г, масло подсолнечное - 80 г, гаприна - 125 г.

Процесс производства комбикормов для объектов аквакультуры с частичной заменой рыбной муки на сырье микробного синтеза (гаприн) включал следующие этапы: экструдирования сырья; измельчение экструдированного сырья; смешивание компонентов рациона; гранулирование; кондиционирование; вакуумное напыление жира; охлаждение).

Экспериментальные работы проводились в условиях Центра «Разведения ценных пород осетровых» ФГБОУ ВО Волгоградского ГАУ. В качестве объектов исследований использовали 1-й контрольную и 3 опытные группы особей молоди форели. Начальная масса опытных особей составляла 55 г. Продолжительность опыта составила 60 дней.

Динамику живой массы молоди форели определяли по результатам взвешиваний 1 раз в месяц, на основании которых рассчитывали абсолютный и среднесуточный приросты, а также коэффициенты упитанности.

Анализ и обобщение экспериментальных материалов, полученных при проведении исследований по оценке результативности использования белковых компонентов отечественного производства в комбикормах для форели, позволил сделать следующие практические и теоретические выводы.

RU 2802758 C1

По итогам проведенного научно-исследовательского опыта, зафиксирована положительная динамика живой массы у представителей 2-й, 3-й и 4-й опытных групп по отношению к 1-й контрольной группе на 7,01, 14,36 и 7,61%, соответственно.

В результате опыта особи 2-й, 3-й и 4-й опытных групп превалировали над результатами по абсолютному приросту живой массы над сверстниками из 1-й контрольной группы соответственно на 13,49, 26,21 и 15,15%

10

20

35

40

45

Наилучшие показатели относительного прироста также имели представители 3-й опытной группы, они превосходили аналогов из контрольной на 32,30, а также 2-й и 4-й опытных групп, на 17,75, и 20,57 соответственно.

По абсолютному приросту длины тела, значительных различий между 1-й контрольной и опытными группами зафиксировано не было. Так, первая контрольная группа уступала сверстникам из 2, 3 и 4 опытных групп по данному показателю во второй контрольный период на 6,71, 9,54, 7,81% соответственно.

Коэффициента упитанности у представителей 3-й опытной группы был выше чем у представителей 1-й контрольной, а также 2-й, 4-й опытных групп.

Таким образом, заявленный продукционный корм для молоди форели обеспечивает повышение живой массы, абсолютный, относительный прирост, абсолютный прирост длины тела, коэффициента упитанности.

(57) Формула изобретения

Гранулированный комбикорм для молоди форели с белковым сырьем микробного синтеза, состоящий из компонентов животного происхождения, рыбной, кровяной муки, рыбьего жира; ингредиентов растительного происхождения пшеницы, соевого шрота, отличающийся тем, что в качестве продукта микробиального происхождения введен гаприн, дополнительно содержит мясную муку, масло подсолнечное и кукурузный глютен, при следующем соотношении компонентов на 100 г готового продукта, г:

	Пшеница	12
	Шрот соевый	20
	Кукурузный глютен	5
30	Мука мясная	10
	Мука рыбная	12,5
	Мука кровяная	10
	Жир рыбий	10
	Масло подсолнечное	8
	Гаприн	12,5,

суточная дача корма рассчитывалась ежемесячно согласно изменению живой массы.

Стр.: 5